27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228 | class ProbabilityNet(NetworkABC):
'''
This class builds a fully-continuous, differential-equation based model of a regulatory network
from a directed graph. The class can produce and characterize the directed graph upon which the continuous model
is based by importing from the Cellnition [`network_library`][cellnition.science.network_models.network_library],
from user-defined edges, or by using procedurally generated
graphs. Once the directed graph representing the regulatory network is formed, `ProbabilityNet` generates
a continuous, differential-equation based analytic model of the regulatory network,
along with numerical counterparts for general simulation in time or in equilibrium state search.
The simulation object produced by this class can be used to build Network Finite State Machines (NFSMs) using the
[`StateMachine`][cellnition.science.networks_toolbox.state_machine.StateMachine] class.
This class is called a "probability network", as the differential equations specifying change in regulatory
network node expression level produce output that is always limited to the range of 0.0 and 1.0, thereby
effectively computing the probability of seeing a gene product (node expression level) rather than an absolute
protein concentration (i.e. a node level = 0.21 represents a 21% probability of node expression).
'''
def __init__(self,
N_nodes: int,
interaction_function_type: InterFuncType = InterFuncType.logistic,
node_expression_levels: float=5.0):
'''
Initialize the ProbabilityNet class.
'''
self.N_nodes = N_nodes
self._nodes_index = [i for i in range(self.N_nodes)]
self.regular_node_inds = self._nodes_index
self.nodes_list = [f'G{i}' for i in range(self.N_nodes)]
# Initialize some object state variables:
self._reduced_dims = False # Indicate that model is full dimensions
self._solved_analytically = False # Indicate that the model does not have an analytical solution
self._dcdt_vect_reduced_s = None # Initialize this to None
self.process_params_s = [] # initialize this to be an empty list
self.edge_types = None
self.edges_index = None
self.p_min = 1.0e-6 # small nonzero element for working with Hill versions
self._push_away_from_zero = self.p_min # smallish constant to push initial guess of fsolve away from zero
super().__init__() # Initialize the base class
self._inter_fun_type = interaction_function_type
if node_expression_levels <= 1:
raise Exception("Node expression levels must be greater than 1!")
self._node_expression_levels = node_expression_levels
# Matrix Equations:
# Matrix symbols to construct matrix equation bases:
self._M_n_so = sp.MatrixSymbol('M_n', self.N_nodes, self.N_nodes)
self._M_beta_so = sp.MatrixSymbol('M_beta', self.N_nodes, self.N_nodes)
self._M_p_so = sp.MatrixSymbol('M_p', self.N_nodes, self.N_nodes)
# Define symbolic adjacency matrices to use as masks in defining multi and add matrices:
self._A_add_so = sp.MatrixSymbol('A_add', N_nodes, N_nodes)
self._A_mul_so = sp.MatrixSymbol('A_mul', N_nodes, N_nodes)
# Now we can define symbolic matrices that use the add and mul adjacencies to mask which
# n-parameters to use:
M_n_add_so = sp.hadamard_product(self._A_add_so, self._M_n_so)
M_n_mul_so = sp.hadamard_product(self._A_mul_so, self._M_n_so)
# And functions can be plugged in as matrix equations; these are the fundamental
# model building functions:
if self._inter_fun_type is InterFuncType.hill:
# For Hill Functions:
self._M_funk_add_so = sp.Matrix(N_nodes, N_nodes,
lambda i, j: 1 / (1 + (self._M_beta_so[j, i] * self._M_p_so[j, i]) ** -M_n_add_so[j, i]))
self._M_funk_mul_so = sp.Matrix(N_nodes, N_nodes,
lambda i, j: 1 / (1 + (self._M_beta_so[j, i] * self._M_p_so[j, i]) ** -M_n_mul_so[j, i]))
else:
# For Logistic Functions:
self._M_funk_add_so = sp.Matrix(N_nodes, N_nodes,
lambda i, j: 1 / (1 + sp.exp(-M_n_add_so[j, i] * (self._M_p_so[j, i] -
self._M_beta_so[j, i]))))
self._M_funk_mul_so = sp.Matrix(N_nodes, N_nodes,
lambda i, j: 1 / (1 + sp.exp(-M_n_mul_so[j, i] * (self._M_p_so[j, i] -
self._M_beta_so[j, i]))))
# Symbolic model parameters:
self._d_s = sp.IndexedBase('d', shape=self.N_nodes, positive=True) # Maximum rate of decay
self._p_s = sp.IndexedBase('p', shape=self.N_nodes, positive=True) # Probability of gene product
# Vectorized node-parameters and variables:
self._d_vect_s = [self._d_s[i] for i in range(self.N_nodes)] # maximum rate of decay for each node
self._c_vect_s = sp.Matrix([self._p_s[i] for i in range(self.N_nodes)]) # gene product probability for each node
self._beta_s = sp.IndexedBase('beta', shape=(self.N_nodes, self.N_nodes), positive=True) # Hill centre
self._n_s = sp.IndexedBase('n', shape=(self.N_nodes, self.N_nodes), positive=True) # Hill coupling
# Create a matrix out of the n_s symbols:
self._M_n_s = sp.Matrix(self.N_nodes, self.N_nodes,
lambda i, j: self._n_s[i, j])
self._M_beta_s = sp.Matrix(self.N_nodes, self.N_nodes,
lambda i, j: self._beta_s[i, j])
# Define vector of ones to use in matrix operations:
self._ones_vect = sp.ones(1, self.N_nodes)
# Create a matrix that allows us to access the concentration vectors
# duplicated along columns:
self._M_p_s = self._c_vect_s * self._ones_vect
def build_adjacency_from_edge_type_list(self,
edge_types: list[EdgeType],
edges_index: list[tuple[int,int]],
coupling_type: CouplingType=CouplingType.specified):
'''
'''
A_full_s = np.zeros((self.N_nodes, self.N_nodes), dtype=int)
A_add_s = np.zeros((self.N_nodes, self.N_nodes), dtype=int)
A_mul_s = np.zeros((self.N_nodes, self.N_nodes), dtype=int)
# Build A_full_s, an adjacency matrix that doesn't distinguish between additive
# and multiplicative interactions:
for ei, ((nde_i, nde_j), etype) in enumerate(zip(edges_index, edge_types)):
if etype is EdgeType.A or etype is EdgeType.As:
A_full_s[nde_i, nde_j] = 1
elif etype is EdgeType.I or etype is EdgeType.Is:
A_full_s[nde_i, nde_j] = -1
for ei, ((nde_i, nde_j), etype) in enumerate(zip(edges_index, edge_types)):
if coupling_type is CouplingType.specified:
if etype is EdgeType.I:
A_add_s[nde_i, nde_j] = -1
elif etype is EdgeType.A:
A_add_s[nde_i, nde_j] = 1
elif etype is EdgeType.Is:
A_mul_s[nde_i, nde_j] = -1
elif etype is EdgeType.As:
A_mul_s[nde_i, nde_j] = 1
elif coupling_type is CouplingType.additive:
if etype is EdgeType.I or etype is EdgeType.Is:
A_add_s[nde_i, nde_j] = -1
elif etype is EdgeType.A or etype is EdgeType.As:
A_add_s[nde_i, nde_j] = 1
elif coupling_type is CouplingType.multiplicative:
if etype is EdgeType.I or etype is EdgeType.Is:
A_mul_s[nde_i, nde_j] = -1
elif etype is EdgeType.A or etype is EdgeType.As:
A_mul_s[nde_i, nde_j] = 1
elif coupling_type is CouplingType.mix1:
if etype is EdgeType.A or etype is EdgeType.As:
A_add_s[nde_i, nde_j] = 1
elif etype is EdgeType.I or etype is EdgeType.Is:
A_mul_s[nde_i, nde_j] = -1
A_add_s = sp.Matrix(A_add_s)
A_mul_s = sp.Matrix(A_mul_s)
A_full_s = sp.Matrix(A_full_s)
return A_add_s, A_mul_s, A_full_s
def get_adjacency_randomly(self, coupling_type: CouplingType=CouplingType.mix1, set_autoactivation: bool=True):
'''
Return a randomly-generated full adjacency matrix.
'''
A_full_s = sp.Matrix(np.random.randint(-1, 2, size=(self.N_nodes, self.N_nodes)))
if set_autoactivation:
# Make it so that any diagonal elements are self-activating rather than self-inhibiting
A_full_s = sp.Matrix(self.N_nodes, self.N_nodes,
lambda i,j: A_full_s[i,j]*A_full_s[i,j] if i==j else A_full_s[i,j])
A_add_s, A_mul_s = self.process_full_adjacency(A_full_s, coupling_type=coupling_type)
return A_add_s, A_mul_s, A_full_s
def edges_from_adjacency(self, A_add_s: MutableDenseMatrix, A_mul_s: MutableDenseMatrix):
'''
Returns edge type and edge index from adjacency matrices.
'''
edges_type = []
edges_index = []
A_full_s = A_add_s + A_mul_s
for i in range(self.N_nodes):
for j in range(self.N_nodes):
afull_ij = A_full_s[i,j]
if afull_ij != 0:
edges_index.append((i, j))
if A_add_s[i,j] < 0:
edges_type.append(EdgeType.I)
elif A_add_s[i,j] > 0:
edges_type.append(EdgeType.A)
elif A_mul_s[i,j] < 0:
edges_type.append(EdgeType.Is)
elif A_mul_s[i,j] > 0:
edges_type.append(EdgeType.As)
else:
edges_type.append(EdgeType.N)
return edges_index, edges_type
def process_full_adjacency(self, A_full_s: MutableDenseMatrix, coupling_type: CouplingType=CouplingType.mix1):
'''
Process a full adjacency matrix into additive and multiplicative components
based on a specified coupling type.
'''
A_add_s = np.zeros((self.N_nodes, self.N_nodes), dtype=int)
A_mul_s = np.zeros((self.N_nodes, self.N_nodes), dtype=int)
for i in range(self.N_nodes):
for j in range(self.N_nodes):
afull_ij = A_full_s[i,j]
if afull_ij == 1:
if coupling_type is CouplingType.additive or coupling_type is CouplingType.mix1:
A_add_s[i,j] = 1
elif coupling_type is CouplingType.multiplicative:
A_mul_s[i,j] = 1
else:
raise Exception('CouplingType.specified is not supported in this method.')
if afull_ij == -1:
if coupling_type is CouplingType.additive:
A_add_s[i,j] = -1
elif coupling_type is CouplingType.multiplicative or coupling_type is CouplingType.mix1:
A_mul_s[i,j] = -1
else:
raise Exception('CouplingType.specified is not supported in this method.')
A_add_s = sp.Matrix(A_add_s)
A_mul_s = sp.Matrix(A_mul_s)
return A_add_s, A_mul_s
def build_analytical_model(self,
A_add_s: MutableDenseMatrix,
A_mul_s: MutableDenseMatrix,
):
'''
'''
# Initialize a list of node indices that should be constrained (removed from solution searches)
# due to their lack of regulation:
self.input_node_inds = []
if A_add_s.shape != (self.N_nodes, self.N_nodes):
raise Exception("Shape of A_add_s is not in terms of network node number!")
if A_mul_s.shape != (self.N_nodes, self.N_nodes):
raise Exception("Shape of A_add_s is not in terms of network node number!")
M_funk_add_si = self._M_funk_add_so.subs(
[(self._M_p_so, self._M_p_s),
(self._M_n_so, self._M_n_s),
(self._M_beta_so, self._M_beta_s),
(self._A_add_so, A_add_s)])
M_funk_mul_si = self._M_funk_mul_so.subs(
[(self._M_p_so, self._M_p_s),
(self._M_n_so, self._M_n_s),
(self._M_beta_so, self._M_beta_s),
(self._A_mul_so, A_mul_s)])
# Filter out the 1/2 terms and set to 0 (addiditive) or 1 (multiplicative):
M_funk_add_s = sp.Matrix(self.N_nodes, self.N_nodes, lambda i, j: sp.Piecewise(
(M_funk_add_si[i, j], M_funk_add_si[i, j] != sp.Rational(1, 2)),
(0, True)))
M_funk_mul_s = sp.Matrix(self.N_nodes, self.N_nodes, lambda i, j: sp.Piecewise(
(M_funk_mul_si[i, j], M_funk_mul_si[i, j] != sp.Rational(1, 2)),
(1, True)))
# As A_add_s is a signed adjacency matrix, we need to get the absolute value to count edges:
abs_A_add_s = sp.hadamard_product(A_add_s, A_add_s)
# Count the nodes interacting (on input) with each node:
n_add_edges_i = abs_A_add_s.T * self._ones_vect.T
# Correct for any zeros in the n_add_edges and create a normalization object:
self._n_add_edges = sp.Matrix(self.N_nodes, 1,
lambda i, j: sp.Piecewise((sp.Rational(1, n_add_edges_i[i, j]), n_add_edges_i[i, j] != 0),
(1, True)))
add_terms_i = M_funk_add_s * self._ones_vect.T
# The add_terms need to be normalized to keep concentrations between 0 and 1:
self._add_terms = sp.hadamard_product(self._n_add_edges, add_terms_i)
self._mul_terms = sp.Matrix(np.prod(M_funk_mul_s, axis=1))
self._dcdt_vect_s = []
for i in range(self.N_nodes):
if self._add_terms[i] == 0 and self._mul_terms[i] == 1: # if there's no add term and no mul term
self._dcdt_vect_s.append(0) # set the rate of change of this unregulated node to zero
self.input_node_inds.append(i) # append this node to the list of nodes that should be constrained
elif self._add_terms[i] == 0 and self._mul_terms[i] != 1: # remove the null add term to avoid nulling all growth
self._dcdt_vect_s.append(self._d_vect_s[i] * self._mul_terms[i] -
self._c_vect_s[i] * self._d_vect_s[i])
else: # the node is a mix of additive and potential multiplicative regulation:
self._dcdt_vect_s.append(self._d_vect_s[i] * self._mul_terms[i] * self._add_terms[i] -
self._c_vect_s[i] * self._d_vect_s[i])
# This is an "energy" function to be minimized at the equilibrium points:
self._opti_s = (sp.Matrix(self._dcdt_vect_s).T * sp.Matrix(self._dcdt_vect_s))[0, 0]
# Create linearized lists of symbolic parameters that are needed to solve the model (exclude the
# zero entries of the M_n and M_beta matrices:
# FIXME: need to rebuild the graph model if edges index changes...
self._beta_vect_s = [self._beta_s[nde_i, nde_j] for nde_i, nde_j in self.edges_index]
self._n_vect_s = [self._n_s[nde_i, nde_j] for nde_i, nde_j in self.edges_index]
self._A_add_s = A_add_s
self._A_mul_s = A_mul_s
# get the "regular" nodes:
self.noninput_node_inds = np.setdiff1d(self.nodes_index, self.input_node_inds)
# As we scale-down all concentrations for additive interactions so that the
# concentration ranges between 0.0 and 1.0, we need to scale the out edge
# beta parameter for these scaled-down nodes so that they signal as they would in
# a fully dimensionalized model:
subs_list = []
for ei, (ndei, ndej) in enumerate(self.edges_index):
if self._n_add_edges[ndei] != 1:
if self._inter_fun_type is InterFuncType.logistic:
subs_list.append((self._beta_vect_s[ei],
self._beta_vect_s[ei] * self._n_add_edges[ndei]))
else:
subs_list.append((self._beta_vect_s[ei],
self._beta_vect_s[ei]/self._n_add_edges[ndei]))
self._dcdt_vect_s = list(sp.Matrix(self._dcdt_vect_s).subs(subs_list))
self.c_vect_s_viz, self.dcdt_vect_s_viz = self.get_visual_equations()
def make_numerical_params(self,
d_base: float|list[float]=1.0,
n_base: float|list[float]=15.0,
beta_base: float|list[float]=0.25,
) -> tuple[list[float], list[float], list[float]]:
'''
Scrape the network for base parameters to initialize numerical parameters.
'''
# Node parameters:
if type(d_base) is list:
assert len(d_base) == self.N_nodes, "Length of d_base not equal to node number!"
d_vect = d_base
else:
d_vect = [d_base for i in range(self.N_nodes)]
# Edge parameters:
if type(n_base) is list:
assert len(n_base) == self.N_edges, "Length of n_base not equal to edge number!"
n_vect = n_base
else:
n_vect = [n_base for i in range(self.N_edges)]
if type(beta_base) is list:
assert len(beta_base) == self.N_edges, "Length of n_base not equal to edge number!"
beta_vect = beta_base
else:
beta_vect = [beta_base for i in range(self.N_edges)]
return d_vect, n_vect, beta_vect
def create_numerical_dcdt(self,
constrained_inds: list | None = None,
constrained_vals: list | None = None):
'''
'''
# First, lambdify the change vector in a way that supports any constraints:
if constrained_inds is None or constrained_vals is None:
# Compute the symbolic Jacobian:
dcdt_jac_s = sp.Matrix(self._dcdt_vect_s).jacobian(self._c_vect_s) # analytical Jacobian
dcdt_vect_f = sp.lambdify((list(self._c_vect_s),
self._n_vect_s,
self._beta_vect_s,
self._d_vect_s),
self._dcdt_vect_s)
dcdt_jac_f = sp.lambdify((list(self._c_vect_s),
self._n_vect_s,
self._beta_vect_s,
self._d_vect_s),
dcdt_jac_s)
else: # If there are constraints split the p-vals into an arguments and to-solve set:
c_vect_args = (np.asarray(list(self._c_vect_s))[constrained_inds]).tolist()
unconstrained_inds = np.setdiff1d(self._nodes_index, constrained_inds).tolist()
c_vect_solve = (np.asarray(list(self._c_vect_s))[unconstrained_inds]).tolist()
# truncate the change vector to only be for unconstrained inds:
dcdt_vect_s = np.asarray(self._dcdt_vect_s)[unconstrained_inds].tolist()
# Compute the symbolic Jacobian:
dcdt_jac_s = sp.Matrix(dcdt_vect_s).jacobian(c_vect_solve) # analytical Jacobian
dcdt_vect_f = sp.lambdify((c_vect_solve,
c_vect_args,
self._n_vect_s,
self._beta_vect_s,
self._d_vect_s),
dcdt_vect_s)
dcdt_jac_f = sp.lambdify((c_vect_solve,
c_vect_args,
self._n_vect_s,
self._beta_vect_s,
self._d_vect_s),
dcdt_jac_s)
return dcdt_vect_f, dcdt_jac_f
def get_function_args(self,
constraint_vals: list|None=None,
d_base: float|list[float]=1.0,
n_base: float|list[float]=3.0,
beta_base: float|list[float]=2.0):
'''
'''
d_vect, n_vect, beta_vect = self.make_numerical_params(d_base, n_base, beta_base)
if constraint_vals is not None:
function_args = (constraint_vals, n_vect, beta_vect, d_vect)
else:
function_args = (n_vect, beta_vect, d_vect)
return function_args
def generate_state_space(self,
c_inds: list,
N_space: int,
) -> tuple[ndarray, list, ndarray]:
'''
Generate a discrete state space over the range of probabilities of
each individual gene in the network.
'''
c_lins = []
for i in c_inds:
c_lins.append(np.linspace(self.p_min, 1.0, N_space))
cGrid = np.meshgrid(*c_lins)
N_pts = len(cGrid[0].ravel())
cM = np.zeros((N_pts, self.N_nodes))
for i, cGrid in zip(c_inds, cGrid):
cM[:, i] = cGrid.ravel()
return cM, c_lins, cGrid
def solve_probability_equms(self,
constraint_inds: list|None = None,
constraint_vals: list|None = None,
signal_constr_vals: list|None = None,
d_base: float|list[float] = 1.0,
n_base: float|list[float] = 15.0,
beta_base: float|list[float] = 0.25,
N_space: int = 2,
search_tol: float=1.0e-15,
sol_tol: float=1.0e-1,
verbose: bool=True,
save_file: str|None = None,
return_saddles: bool = False,
search_main_nodes_only: bool=False,
node_num_max: int|None = None
):
'''
Solve for the equilibrium points of gene product probabilities in
terms of a given set of numerical parameters.
'''
# For any network, there may be nodes without regulation that require constraints
# (these are in self._constrained_nodes). Therefore, add these to any user-supplied
# constraints:
constrained_inds, constrained_vals = self._handle_constrained_nodes(constraint_inds,
constraint_vals,
signal_constr_vals=signal_constr_vals)
dcdt_vect_f, dcdt_jac_f = self.create_numerical_dcdt(constrained_inds=constrained_inds,
constrained_vals=constrained_vals)
if node_num_max is not None:
sort_hier_inds = np.argsort(self.hier_node_level[self.noninput_node_inds])
self.influence_node_inds = list(np.asarray(self.noninput_node_inds)[sort_hier_inds][0:node_num_max])
if constrained_inds is None or constrained_vals is None:
unconstrained_inds = self._nodes_index
else:
unconstrained_inds = np.setdiff1d(self._nodes_index, constrained_inds).tolist()
if search_main_nodes_only is False:
M_pstates, _, _ = self.generate_state_space(unconstrained_inds, N_space)
else:
if len(self.main_nodes):
if node_num_max is None:
M_pstates, _, _ = self.generate_state_space(self.main_nodes, N_space)
elif len(self.main_nodes) < node_num_max:
M_pstates, _, _ = self.generate_state_space(self.main_nodes, N_space)
else:
M_pstates, _, _ = self.generate_state_space(self.influence_node_inds, N_space)
else:
raise Exception("No main nodes; cannot perform state search with "
"search_main_nodes_only=True.")
sol_Mo = []
function_args = self.get_function_args(constraint_vals=constrained_vals,
d_base=d_base,
n_base=n_base,
beta_base=beta_base)
self._function_args = function_args
for i, cvecto in enumerate(M_pstates): # for each test vector:
# get values for the genes we're solving for...
# Note: fsolve doesn't allow us to impose constraints so we need to push this initial guess
# quite far away from zero with the added constant:
c_vect_sol = cvecto[unconstrained_inds] + self._push_away_from_zero
sol_roots = fsolve(dcdt_vect_f,
c_vect_sol,
args=function_args,
xtol=search_tol,
fprime=dcdt_jac_f,
col_deriv=False,
)
# Find any roots below zero and constrain them to 0.0:
sol_roots[(sol_roots <= 0.0).nonzero()] = self.p_min
c_eqms = np.zeros(self.N_nodes)
c_eqms[unconstrained_inds] = sol_roots
if constrained_inds is not None and constrained_vals is not None:
c_eqms[constrained_inds] = constrained_vals
# c_eqms = self.multiround(c_eqms)
sol_Mo.append(c_eqms)
# _, unique_inds = np.unique(np.round(sol_Mo, 2), axis=0, return_index=True)
_, unique_inds = np.unique(self.multiround(np.asarray(sol_Mo)), axis=0, return_index=True)
sol_M = np.asarray(sol_Mo)[unique_inds]
stable_sol_M, sol_M_char = self.find_attractor_sols(sol_M,
dcdt_vect_f,
dcdt_jac_f,
function_args,
constrained_inds=constrained_inds,
tol= sol_tol,
verbose = verbose,
save_file = save_file,
return_saddles=return_saddles)
return stable_sol_M, sol_M_char, sol_M
def find_attractor_sols(self,
sols_0: ndarray,
dcdt_vect_f: Callable,
jac_f: Callable,
func_args: tuple|list,
constrained_inds: list | None = None,
tol: float=1.0e-1,
verbose: bool=True,
save_file: str|None = None,
return_saddles: bool = False
):
'''
'''
eps = 1.0e-20 # Small value to avoid divide-by-zero in the jacobian
sol_dicts_list = []
if constrained_inds is None:
unconstrained_inds = self._nodes_index
else:
unconstrained_inds = np.setdiff1d(self._nodes_index, constrained_inds)
for pminso in sols_0:
solution_dict = {}
solution_dict['Minima Values'] = pminso
pmins = pminso + eps # add the small amount here, before calculating the jacobian
solution_dict['Change at Minima'] = dcdt_vect_f(pmins[unconstrained_inds], *func_args)
jac = jac_f(pmins[unconstrained_inds], *func_args)
# get the eigenvalues of the jacobian at this equillibrium point:
eig_valso, eig_vects = np.linalg.eig(jac)
# round the eigenvalues so we don't have issue with small imaginary components
eig_vals = np.round(np.real(eig_valso), 1) + np.round(np.imag(eig_valso), 1) * 1j
solution_dict['Jacobian Eigenvalues'] = eig_vals
# print(eig_vals)
# get the indices of eigenvalues that have only real components:
real_eig_inds = (np.imag(eig_vals) == 0.0).nonzero()[0]
# If all eigenvalues are real and they're all negative then its an attractor:
if len(real_eig_inds) == len(eig_vals) and np.all(np.real(eig_vals) <= 0.0):
char_tag = EquilibriumType.attractor.name
# If all eigenvalues are real and they're all positive then its a repellor:
elif len(real_eig_inds) == len(eig_vals) and np.all(np.real(eig_vals) > 0.0):
char_tag = EquilibriumType.repellor.name
# If all eigenvalues are real and they're a mix of positive and negative, then it's a saddle:
elif len(real_eig_inds) == len(eig_vals) and np.any(np.real(eig_vals[real_eig_inds] > 0.0)):
char_tag = EquilibriumType.saddle.name
# If there are imaginary eigenvalue components and all real components are less than zero we
# have a stable limit cycle:
elif np.any(np.imag(eig_vals) != 0.0) and np.all(np.real(eig_vals) <= 0.0):
char_tag = EquilibriumType.attractor_limit_cycle.name
# If there are imaginary eigenvalue components and all real components are less than zero we
# have a stable limit cycle:
elif np.any(np.imag(eig_vals) != 0.0) and np.all(np.real(eig_vals) > 0.0):
char_tag = EquilibriumType.repellor_limit_cycle.name
# If there are imaginary eigenvalues and a mix of real component signs, we only know its a limit cycle but can't say
# anything certain about stability:
elif np.any(np.imag(eig_vals) != 0.0) and np.any(np.real(eig_vals) > 0.0):
char_tag = EquilibriumType.limit_cycle.name
else:
char_tag = EquilibriumType.undetermined.name
solution_dict['Stability Characteristic'] = char_tag
sol_dicts_list.append(solution_dict)
solsM = []
sol_char_list = []
sol_char_error = []
i = 0
for sol_dic in sol_dicts_list:
# print("Computing the reporting stuff")
error = np.sum(np.asarray(sol_dic['Change at Minima'])**2)
char = sol_dic['Stability Characteristic']
sols = sol_dic['Minima Values']
if return_saddles is False:
if char is not EquilibriumType.saddle.name and error <= tol:
i += 1
if verbose:
print(f'Soln {i}, {char}, {np.round(sols, 2)}, {np.round(error, 4)}')
solsM.append(sols)
sol_char_list.append(char)
sol_char_error.append(error)
else:
if error <= tol:
i += 1
if verbose:
print(f'Soln {i}, {char}, {np.round(sols, 2)}, {np.round(error, 4)}')
solsM.append(sols)
sol_char_list.append(char)
sol_char_error.append(error)
solsM_return = np.asarray(solsM).T
sol_char_list_return = np.asarray(sol_char_list).T
if save_file is not None:
solsMi = np.asarray(solsM)
header = [f'State {i}' for i in range(solsMi.shape[0])]
with open(save_file, 'w', newline="") as file:
csvwriter = csv.writer(file) # create a csvwriter object
csvwriter.writerow(header) # write the header
csvwriter.writerow(sol_char_error) # write the root error at steady-state
csvwriter.writerow(sol_char_list) # write the attractor characterization
for si in solsMi.T:
csvwriter.writerow(si) # write the soln data rows for each gene
return solsM_return, sol_char_list_return
def _handle_constrained_nodes(self,
constr_inds: list | None,
constr_vals: list[float] | None,
signal_constr_vals: list[float] | None = None
) -> tuple[list, list]:
'''
Networks will often have nodes without regulation that need to
be constrained during optimization. This helper-method augments
these naturally-occuring nodes with any additional constraints
supplied by the user.
'''
len_constr = len(self.input_node_inds)
if signal_constr_vals is None: # default to zero
sig_vals = (self.p_min*np.ones(len_constr)).tolist()
else:
sig_vals = signal_constr_vals
if len_constr != 0:
if constr_inds is None or constr_vals is None:
constrained_inds = self.input_node_inds.copy()
constrained_vals = sig_vals
else:
constrained_inds = constr_inds + self.input_node_inds.copy()
constrained_vals = constr_vals + sig_vals
else:
if constr_inds is None or constr_vals is None:
constrained_inds = []
constrained_vals = []
else:
constrained_inds = constr_inds*1
constrained_vals = constr_vals*1
return constrained_inds, constrained_vals
def run_time_sim(self,
tvect: ndarray|list,
tvectr: ndarray|list,
cvecti: ndarray|list,
sig_inds: ndarray|list|None = None,
sig_vals: list | ndarray | None = None,
constrained_inds: list | None = None,
constrained_vals: list | None = None,
d_base: float|list[float] = 1.0,
n_base: float|list[float] = 15.0,
beta_base: float|list[float] = 0.25
):
'''
'''
dt = tvect[1] - tvect[0]
if sig_inds is None or sig_vals is None:
sig_inds = []
sig_vals = []
concs_time = []
dcdt_vect_f, dcdt_jac_f = self.create_numerical_dcdt(constrained_inds=constrained_inds,
constrained_vals=constrained_vals)
function_args = self.get_function_args(constraint_vals=constrained_vals,
d_base=d_base,
n_base=n_base,
beta_base=beta_base)
for ti, tt in enumerate(tvect):
dcdt = np.asarray(dcdt_vect_f(cvecti, *function_args))
cvecti += dt * dcdt
# manually set the signal node values:
cvecti[sig_inds] = sig_vals[ti, sig_inds]
if tt in tvectr:
concs_time.append(cvecti * 1)
concs_time = np.asarray(concs_time)
return concs_time
def get_visual_equations(self):
'''
'''
c_vect_viz = []
subs_list = []
self._subs_syms_list = []
for pi, nde_lab in zip(self._c_vect_s, self.nodes_list):
nde_sym = sp.symbols(str(nde_lab))
c_vect_viz.append(nde_sym)
subs_list.append((pi, nde_sym))
self._subs_syms_list.append(nde_sym)
for ei, (nij, bij) in enumerate(zip(self._n_vect_s, self._beta_vect_s)):
b_sym = sp.symbols(f'beta_{ei}')
n_sym = sp.symbols(f'n_{ei}')
subs_list.append((bij, b_sym))
subs_list.append((nij, n_sym))
self._subs_syms_list.append(b_sym)
self._subs_syms_list.append(n_sym)
for ndei, di in enumerate(self._d_vect_s):
d_sym = sp.symbols(f'd_{ndei}')
subs_list.append((di, d_sym))
self._subs_syms_list.append(d_sym)
dcdt_vect_s_viz = sp.Matrix(self._dcdt_vect_s).subs(subs_list)
return c_vect_viz, dcdt_vect_s_viz
def save_model_equations(self,
save_eqn_image: str,
save_reduced_eqn_image: str|None = None,
save_eqn_csv: str|None = None,
substitute_node_labels: bool = True
):
'''
Save images of the model equations, as well as a csv file that has
model equations written in LaTeX format.
Parameters
-----------
save_eqn_image : str
The path and filename to save the main model equations as an image.
save_reduced_eqn_image : str|None = None
The path and filename to save the reduced main model equations as an image (if model is reduced).
save_eqn_csv : str|None = None
The path and filename to save the main and reduced model equations as LaTex in a csv file.
'''
if substitute_node_labels:
subs_list = []
for pi, nde_lab in zip(self._c_vect_s, self.nodes_list):
nde_sym = sp.symbols(nde_lab)
subs_list.append((pi, nde_sym))
for ei, (nij, bij) in enumerate(zip(self._n_vect_s, self._beta_vect_s)):
b_sym = sp.symbols(f'beta_{ei}')
n_sym = sp.symbols(f'n_{ei}')
subs_list.append((bij, b_sym))
subs_list.append((nij, n_sym))
for ndei, di in enumerate(self._d_vect_s):
d_sym = sp.symbols(f'd_{ndei}')
subs_list.append((di, d_sym))
_dcdt_vect_s = list(sp.Matrix(self._dcdt_vect_s).subs(subs_list))
_c_vect_s = list(sp.Matrix(self._c_vect_s).subs(subs_list))
if self._dcdt_vect_reduced_s is not None:
_dcdt_vect_reduced_s = list(sp.Matrix(self._dcdt_vect_reduced_s).subs(subs_list))
_c_vect_reduced_s = list(sp.Matrix(self._c_vect_reduced_s).subs(subs_list))
else:
_dcdt_vect_s = self._dcdt_vect_s
_c_vect_s = self._c_vect_s
if self._dcdt_vect_reduced_s is not None:
_dcdt_vect_reduced_s = self._dcdt_vect_reduced_s
_c_vect_reduced_s = self._c_vect_reduced_s
t_s = sp.symbols('t')
c_change = sp.Matrix([sp.Derivative(ci, t_s) for ci in _c_vect_s])
eqn_net = sp.Eq(c_change, sp.Matrix(_dcdt_vect_s))
sp.preview(eqn_net,
viewer='file',
filename=save_eqn_image,
euler=False,
dvioptions=["-T", "tight", "-z", "0", "--truecolor", "-D 600", "-bg", "Transparent"])
# Save the equations for the graph to a file:
header = ['Concentrations', 'Change Vector']
eqns_to_write = [[sp.latex(_c_vect_s), sp.latex(_dcdt_vect_s)]]
if self._dcdt_vect_reduced_s is not None and save_reduced_eqn_image is not None:
c_change_reduced = sp.Matrix([sp.Derivative(ci, t_s) for ci in _c_vect_reduced_s])
eqn_net_reduced = sp.Eq(c_change_reduced, _dcdt_vect_reduced_s)
sp.preview(eqn_net_reduced,
viewer='file',
filename=save_reduced_eqn_image,
euler=False,
dvioptions=["-T", "tight", "-z", "0", "--truecolor", "-D 600", "-bg", "Transparent"])
eqns_to_write.append(sp.latex(_c_vect_reduced_s))
eqns_to_write.append(sp.latex(_dcdt_vect_reduced_s))
header.extend(['Reduced Concentations', 'Reduced Change Vector'])
if save_eqn_csv is not None:
with open(save_eqn_csv, 'w', newline="") as file:
csvwriter = csv.writer(file) # 2. create a csvwriter object
csvwriter.writerow(header) # 4. write the header
csvwriter.writerows(eqns_to_write) # 5. write the rest of the data
# ----Methods for Analytical Models--------
def reduce_model_dimensions(self, use_nonlinsolve: bool = False):
'''
Using analytical methods, attempt to reduce the multidimensional
network equations to as few equations as possible.
'''
# Solve the nonlinear system as well as is possible:
nosol = False
# We want to restrict this model reduction to homogeneous networks that
# only contain genes and signals.
if len(self.process_node_inds) or self._inter_fun_type is InterFuncType.logistic:
print("System unsolvable due to use of logistic interaction function. Try Hill-type equations.")
nosol = True # Immediately flag the sysem as unsolvable
else:
try:
if use_nonlinsolve:
sol_csetoo = sp.nonlinsolve(self._dcdt_vect_s,
self._c_vect_s[self.noninput_node_inds.tolist(), :])
else:
sol_csetoo = sp.solve(self._dcdt_vect_s,
self._c_vect_s[self.noninput_node_inds.tolist(), :])
# Clean up the sympy container for the solutions:
sol_cseto = list(list(sol_csetoo)[0])
if len(sol_cseto):
c_master_i = [] # the indices of concentrations involved in the master equations (the reduced dims)
sol_cset = {} # A dictionary of auxillary solutions (plug and play)
for i, c_eq in enumerate(sol_cseto):
if c_eq in self._c_vect_s: # If it's a non-solution for the term, append it as a non-reduced conc.
c_master_i.append(self._c_vect_s.index(c_eq))
else: # Otherwise append the plug-and-play solution set:
sol_cset[self._c_vect_s[self.noninput_node_inds.tolist(), :][i]] = c_eq
master_eq_list = [] # master equations to be numerically optimized (reduced dimension network equations)
c_vect_reduced = [] # concentrations involved in the master equations
if len(c_master_i):
for ii in c_master_i:
# substitute in the expressions in terms of master concentrations to form the master equations:
ci_solve_eq = self._dcdt_vect_s[ii].subs([(k, v) for k, v in sol_cset.items()])
master_eq_list.append(ci_solve_eq)
c_vect_reduced.append(self._c_vect_s[ii])
else: # if there's nothing in c_master_i but there are solutions in sol_cseto, then it's been fully solved:
print("The system has been fully solved by analytical methods!")
self._solved_analytically = True
else:
print("No solutions found for the system.")
nosol = True
except:
print("Exception called in Sympy.")
nosol = True
# Results:
if nosol is True:
self._reduced_dims = False
print("Unable to reduce equations!")
# Set all reduced system attributes to None:
self._dcdt_vect_reduced_s = None
self._c_vect_reduced_s = None
self.c_master_i = None
self.c_remainder_i = None
self.c_vect_remainder_s = None
# This is the dictionary of remaining concentrations that are in terms of the reduced concentrations,
# such that when the master equation set is solved, the results are plugged into the equations in this
# dictionary to obtain solutions for the whole network
self.sol_cset_s = None
self.signal_reduced_inds = None
self.nonsignal_reduced_inds = None
else: # If we have solutions, proceed:
self._reduced_dims = True
if self._solved_analytically is False:
# New equation list to be numerically optimized (should be significantly reduced dimensions):
# Note: this vector is no longer the change rate vector; its now solving for concentrations
# where the original rate change vector is zero:
self._dcdt_vect_reduced_s = sp.Matrix(master_eq_list)
# This is the concentration vector that contains the reduced equation concentration variables:
self._c_vect_reduced_s = c_vect_reduced
self.c_master_i = c_master_i # indices of concentrations that are being numerically optimized
self.c_remainder_i = np.setdiff1d(self.nodes_index, self.c_master_i) # remaining conc indices
self.c_vect_remainder_s = np.asarray(self._c_vect_s)[self.c_remainder_i].tolist() # remaining concs
# This is the dictionary of remaining concentrations that are in terms of the reduced concentrations,
# such that when the master equation set is solved, the results are plugged into the equations in this
# dictionary to obtain solutions for the whole network:
self.sol_cset_s = sol_cset
# Create a set of signal node indices to the reduced c_vect array:
self.signal_reduced_inds = []
for si in self.input_node_inds:
if si in self.c_master_i:
self.signal_reduced_inds.append(self.c_master_i.index(si))
self.nonsignal_reduced_inds = np.setdiff1d(np.arange(len(self.c_master_i)),
self.signal_reduced_inds)
else:
# Set most reduced system attributes to None:
self._dcdt_vect_reduced_s = None
self._c_vect_reduced_s = None
self.c_master_i = None
self.c_remainder_i = None
self.c_vect_remainder_s = None
self.signal_reduced_inds = None
self.nonsignal_reduced_inds = None
# This is the dictionary of remaining concentrations that are in terms of the reduced concentrations,
# such that when the master equation set is solved, the results are plugged into the equations in this
# dictionary to obtain solutions for the whole network:
self.sol_cset_s = sol_cset
# The sol_cset exists and can be lambdified for full solutions. Here we lambdify it without the c_vect:
if len(self.process_node_inds):
lambda_params_r = [self._d_vect_s,
self._beta_vect_s,
self._n_vect_s,
self._c_vect_s[self.input_node_inds, :],
self.extra_params_s]
else:
lambda_params_r = [self._d_vect_s,
self._beta_vect_s,
self._n_vect_s,
self._c_vect_s[self.input_node_inds, :]]
self.sol_cset_f = {}
for ci, eqci in self.sol_cset_s.items():
# self.sol_cset_f[ci.indices[0]] = sp.lambdify(lambda_params_r, eqci)
self.sol_cset_f[ci] = sp.lambdify(lambda_params_r, eqci)
# ----Time Dynamics Methods----------------
def pulses(self,
tvect: list | ndarray,
t_on: float | int,
t_off: float | int,
c_base: float | int = 1.0,
c_active: float | int = 0.0,
):
'''
'''
itop = (tvect >= t_on).nonzero()[0]
ibot = (tvect <= t_off).nonzero()[0]
ipulse = np.intersect1d(ibot, itop)
pulse_sig = c_active * np.ones(len(tvect))
pulse_sig[ipulse] = c_base
return pulse_sig
def get_interval_inds(self,
tvect: ndarray,
t_on: float,
t_off: float,
t_wait: float = 0.0
):
'''
Returns indices specifying an interval from the
supplied vector tvect spanning between vector
values t_on and t_off.
Parameters
----------
t_vect : ndarray
The vector to pull the interval from.
t_on : float
The first value in the vector defining the interval start.
t_off : float
The value in the vector defining the interval end.
t_wait: float
The amount of time to push up the start of the interval from
t_on (which is useful if you're waiting for the system to get
back to steady-state).
'''
itop = (tvect >= t_on + t_wait).nonzero()[0]
ibot = (tvect <= t_off).nonzero()[0]
ipulse_inds = np.intersect1d(ibot, itop)
return ipulse_inds
def make_pulsed_signals_matrix(self,
tvect: list | ndarray,
sig_inds: list | ndarray,
sig_times: list | ndarray,
sig_mag: list | ndarray):
'''
'''
Nt = len(tvect)
c_signals = np.zeros((Nt, self.N_nodes)) # Initialize matrix holding the signal sequences
for si, (ts, te), (smin, smax) in zip(sig_inds, sig_times, sig_mag):
c_signals[:, si] += self.pulses(tvect,
ts,
te,
c_base=smax,
c_active=smin
)
return c_signals
def get_all_intervals(self,
tvect: ndarray,
sig_times: list | ndarray,
t_wait: float = 0.0,
add_end_intervals: bool = True
):
'''
'''
intervals_set = set() # Initialize set to hold the interval indices
# sig_times = sorted(sig_times) # sort the time tuples by their start time
sig_times.sort(key=lambda x: x[0]) # sort the time tuples by their start time
for ts, te in sig_times:
inti = self.get_interval_inds(tvect,
ts,
te,
t_wait=t_wait
)
if len(inti):
intervals_set.add((inti[0], inti[-1]))
if add_end_intervals:
# Add a start interval
intis = self.get_interval_inds(tvect,
tvect[0],
sig_times[0][0],
t_wait=t_wait
)
if len(intis):
intervals_set.add((intis[0], intis[-1]))
# Add an end interval:
intie = self.get_interval_inds(tvect,
sig_times[-1][1],
tvect[-1],
t_wait=t_wait
)
if len(intie):
intervals_set.add((intie[0], intie[-1]))
intervals_list = list(intervals_set)
intervals_list.sort(key=lambda x: x[0]) # sort the time tuples by their start time
return intervals_list
def make_time_vects(self,
tend: float,
dt: float,
dt_samp: float | None = None, ):
'''
'''
Nt = int(tend / dt)
tvect = np.linspace(0.0, tend, Nt)
# sampling compression
if dt_samp is not None:
sampr = int(dt_samp / dt)
tvectr = tvect[0::sampr]
else:
tvectr = tvect
# make a time-step update vector so we can update any sensors as
# an absolute reading (dt = 1.0) while treating the kinetics of the
# other node types:
# dtv = dt * np.ones(self._N_nodes)
# dtv[self.sensor_node_inds] = 1.0
return tvect, tvectr
def multiround(self, cc):
'''
Perform a rounding procedure to 1/(node_expression_levels - 1) level of resolution.
For example, if node_expression_levels = 5.0, then this will round values to 0.0, 0.25, 0.5, 0.75, and 1.0.
'''
cc = np.round(cc * (self._node_expression_levels - 1)) / (self._node_expression_levels - 1)
return cc
|